
Writing disassembler - part 1 - v1.0

0.0 Introdution
 0.1 What?
 0.2 Why?
 0.3 And how?
1.0 Planning the engine
2.0 Structure of instruction
2.1 Opcodes
2.2 Operands
2.3 Prefixes
2.4 Instruction data
 2.4.1 Memory address structure

 2.5 Pointer to code
 2.6 "Label mark"
3.0 Files organization
4.0 What in next part?

--- -------------------
0.0 Introdution
--- -------------------

0.1 What?

Disassembler engine it's some procedure that take s ome
pointer to assembled code (for example it takes it from some
exe file from .text (.code) section. Then it disass embles it
to some user-friendly structures. Normally assemble d
instructions have different length and it's hard (o r
impossible) to manipulate them without disassemblin g.

0.2 Why?

Disassembling is used for poli/meta-morphic viruses .
For example metamorphic virus will disassemble his own body
(even disassembler procedure) then shrink/change/ex pand
instructions using disassembled structures and then it will
reassemble it again and ofcourse put it to some exe it wants
to infect :).

0.3 And how?

I will write the engine in assembler - because we
probably want to use it in some viri stuff :). I us e masm -
many people say that masm is crap and they use nasm . I realy
don't know which assembler is better. I started to learn
assembler with masm and I realy like it as it has v ery
powerful macro engine (which we will use writing ou r engine).
Nasm have macro support too - I even tried nasm few times
but, well, I prefer masm.

--- -------------------
1.0 Overview of disassembler engine
--- -------------------

I don't know how to write a good disassembler (dasm) engine
yet :). But I have few sources and few ideas (more sources than
ideas :) and I will try. The most important part of making such
engine is planing - without planing we won't finish anything! So
first few chapters of this "tutorial" will focus ju st on
theoretical aspects of our dasm structure.

First of all we have to plan how we will store inst ructions
disassembled by our engine - we need some structure which will be
capable to hold any instruction we want. It must be also very
comfortable to manipulate it. When we will make it, it will define
our own pseudo-assembler language. So lets begin an d jump to next
chapter.

--- -------------------
2.0 Structure of instruction
--- -------------------

Okay, we need instruction structure - lets create i t in
"_instr.inc". Here is body of our instruction (empt y now):

; _instr.inc

_instr struct
 ...
_instr ends

Most important field in our structure will be opcod e field.
It will define the instruction that our structure h olds. Let it be
one byte - it will allow us to hold there 2^8 = 256 different
values (instructions). It should be enough as we do n't need every
instruction in processor to be recognizable by our dasm engine
(for example we don't need FPU or MMX instructions, probably only
the basic ones). Now our structure will look like t his:

; _instr.inc

_instr struct
 opcode byte ?
 ...
_instr ends

2.1 Opcodes

Now we have to define some opcodes that our engine will
use - lets create file "opcodes.inc" (writing code in
separate files will allow us to manage project easi er). We
can decide for each instruction what number (from 0 to 255)
it will have. But at first lets construct some list of x86
instructions that we want to have in engine:

 name | operand1 | operand2

arithmetic instructions

add ; add | mem/reg | mem/reg/imm
sub ; sub | mem/reg | mem/reg/imm
inc ; inc | mem/reg |
dec ; dec | mem/reg |
neg ; neg | mem/reg |
mul ; mul | mem/reg | eax/edx
div ; div | mem/reg | eax/edx

logic instructions

or ; or | mem/reg | mem/reg/imm
and ; and | mem/reg | mem/reg/imm
xor ; and | mem/reg | mem/reg/imm
not ; not | mem/reg |

shift instructions

shl ; shl | mem/reg | imm/ cl
shr ; shr | mem/reg | imm/ cl
sal ; sal | mem/reg | imm/ cl
sar ; sar | mem/reg | imm/ cl

rotation instructions

rol ; rol | mem/reg | imm/ cl
ror ; ror | mem/reg | imm/ cl
rcl ; rcl | mem/reg | imm/ cl
rcr ; rcr | mem/reg | imm/ cl

data transfer instructions

mov ; mov | mem/reg | mem/reg/imm
xchg ; xchg | mem/reg | mem/reg
push ; push | mem/reg/imm |
pop ; pop | mem/reg |
pusha; pusha | |
popa ; popa | |
pushad;pushad| |
popad; popad | |
pushf; pushf | |
pushfd;pushfd| |
popf ; popf | |
popfd; popfd | |
stc ; stc | |
clc ; stc | |
cmc ; stc | |
std ; stc | |
cld ; stc | |
sti ; stc | |
cli ; stc | |
cbw ; stc | |
cwd ; stc | |
cwde ; stc | |

other instructions

lea ; lea | reg | mem
nop ; nop | |

program control instructions

jxx ; jxx | mem/reg/imm |
jmp ; jmp | mem/reg/imm |
enter; enter | imm | imm
leave;leave | |
call; call | mem/reg/imm |
ret ; ret | imm |
loopxx;loopxx| imm |

string instructions

cmps; cmps | esi | edi
lods; lods | esi | eax
movs; movs | esi | edi
scas; scas | edi | eax
stos; stos | edi | eax

compare in structions

cmp ; cmp | mem/reg | mem/reg/imm
test; test | mem/reg | mem/reg/imm

virtual instructions

movm; movm | mem | mem
apistart; | imm |
apiend; | imm | imm

Okay, this table needs some explanation. It include s
all instructions that we need in our engine - ofcou rse we can
put here any instruction but we probably won't use most of
them. Virtual instructions - what is it? In assembl er for
example there is no instruction mov mem,mem - it's forbidden.
But we have to do this very often in our program. W e do this
by for example push mem/pop mem or mov reg,mem/mov mem,reg
and so on. But in our pseudo assembler we can hold thos
instructions like one instruction movm (move mem to mem). It
will help us to manipulate the code later. We will just have
to expand such instruction in 2 instructions during assembly
process. Instructions apistart/apiend are just prol ogue of
the procedure (push ebp/mov ebp,esp/sub esp,imm) an d epilogue
(add esp,imm/pop ebp).

I you don't know any instructions from the table ju st
type "intel instruction set" in google and check fi rst few
links to get instructions and descriptions of them.

There is something important about operands - even if
operand1 can be mem and operand can be mem too - do n't forget
that mem,mem is forbidden!

Okay what about operands size? Ofcourse the registe r
operand can be 8 or 16 or 32 bit. And immidiate val ue can

also be 8/16/32bit. But our pseudo assembler must b e as
comfortable for us as possible so we will hold info rmation
about operands sizes later in the structure.

Now when we have list of instruction lets construct
"opcodes.inc", where we will declare some opcodes c onstants.

; opcodes.inc

.const

; arithmetic instructions
OPCODE_ADD equ 000h
OPCODE_SUB equ 001h
OPCODE_INC equ 002h
OPCODE_DEC equ 003h
OPCODE_NEG equ 004h
OPCODE_MUL equ 005h
OPCODE_DIV equ 006h

 ; logic instructions
OPCODE_OR equ 007h
OPCODE_AND equ 008h
OPCODE_XOR equ 009h
OPCODE_NOT equ 00ah

; shift instructions
OPCODE_SHL equ 00bh
OPCODE_SHR equ 00ch
OPCODE_SAL equ 00dh
OPCODE_SAR equ 00eh

; rotation instructions
OPCODE_ROL equ 00fh
OPCODE_ROR equ 010h
OPCODE_RCL equ 011h
OPCODE_RCR equ 012h

; data transfer instructions
OPCODE_MOV equ 013h
OPCODE_XCHG equ 014h
OPCODE_PUSH equ 015h
OPCODE_POP equ 016h
OPCODE_PUSHA equ 017h
OPCODE_POPA equ 018h
OPCODE_PUSHAD equ 019h
OPCODE_POPAD equ 01ah
OPCODE_PUSHF equ 01bh
OPCODE_PUSHFD equ 01ch
OPCODE_POPF equ 01dh
OPCODE_POPFD equ 01eh
OPCODE_STC equ 01fh
OPCODE_CLC equ 020h
OPCODE_CMC equ 021h
OPCODE_STD equ 022h

OPCODE_CLD equ 023h
OPCODE_STI equ 024h
OPCODE_CLI equ 025h
OPCODE_CBW equ 026h
OPCODE_CWD equ 027h
OPCODE_CWDE equ 028h

; other instructions
OPCODE_LEA equ 02ah
OPCODE_NOP equ 090h

; program control instructions
OPCODE_JXX equ 02ch
OPCODE_JMP equ 02dh
OPCODE_ENTER equ 02eh
OPCODE_LEAVE equ 02fh
OPCODE_CALL equ 030h
OPCODE_RET equ 031h
OPCODE_LOOPXX equ 032h

; string instructions
OPCODE_CMPS equ 033h
OPCODE_LODS equ 034h
OPCODE_MOVS equ 035h
OPCODE_SCAS equ 036h
OPCODE_STOS equ 037h

; compare in structions
OPCODE_CMP equ 03eh

 OPCODE_TEST equ 03fh

; virtual instructions
OPCODE_MOVM equ 040h
OPCODE_APISTART equ 041h
OPCODE_APIEND equ 042h

2.2 Operands

Now we need some variable in our _instr structure t hat
will represent operands used by the instruction whi ch is
definied by the opcode field. First lets see what w e will add
in file "_instr.inc":

; _instr.inc

include opcodes.inc
include operands.inc

_instr struct
 opcode byte ?

 operands byte ?
 ...
 _instr ends

All we need is file operands.inc. But what types do we
have in assembler? There are 3 types of operands: r eg
(register), mem (memory address), imm (immediate va lue -
const number). Each isntruction can have 0,1 or 2 o perands
(well in fact there are instructions that take 3 ar guments
but we don't need them). So:

; _operands.inc

.const

 OPERANDS_NONE equ 000h
 OPERANDS_REG equ 001h
 OPERANDS_MEM equ 002h
 OPERANDS_IMM equ 003h
 OPERANDS_REG_REG equ 004h
 OPERANDS_REG_MEM equ 005h
 OPERANDS_REG_IMM equ 006h
 OPERANDS_MEM_MEM equ 007h
 OPERANDS_MEM_REG equ 008h
 OPERANDS_MEM_IMM equ 009h

2.3 Prefixes

Prefixes are some bytes that we can put in front of
instruction. Instruction may have 0,1 or more prefi xes. Not
evry instruction can have specific prefix. There ar e few
groups of prefixes:

Lock and repeat prefixes (3 values):
LOCK - 0f0h
REPNE/REPNZ - 0f2h
REP - 0f3h
REPE/REPZ - 0f3h (same as REP)
SIMD - 0f3h (same as REP)

Segment override prefixes (6 values):
CS - 02eh
SS - 036h
DS - 03eh
ES - 026h
FS - 064h
GS - 065h

Operand-size override prefix (1 value):
OP_SIZE - 066h

Address-size override prefix (1 value):
ADDR_SIZE - 067h

Each instruction can have only 1 prefix from each g roup
- so one instruction can have up to 4 prefixes (we have 4
groups). There are few prefixes we wont use - SIMD and LOCK -
we just don't need them. We will store all prefix d ata in one
byte called prefixes:

; _instr.inc

include opcodes.inc
include operands.inc
include prefixes.inc

_instr struct
 opcode byte ?

 operands byte ?
 prefixes byte ?

 ...
 _instr ends

We have one byte so 8 bits to store those values. L ets
do like that:

[7] [6] [5] [4] [3] [2] [1] [0]
 \ | / | | | |_ operand size (bit 0)
 \ | / | | |_ address size (bit 1)
 \|/ | |_ REPNE/REPNZ (bit 2)
 | |_ REP/REPE/REPZ (bit 3)
 |_ segment override (bit 4,5,6)

7th bit stays unused for now maybe we will use it l ater
for some extra data. Okay lets look into "prefixes. inc":

; prefixes.inc

.const

; bit patterns
PREFIX_OP_SIZE equ 01h ; bit 0
PREFIX_ADDR_SIZE equ 02h ; bit 1
PREFIX_REPNE equ 04h ; bit 2
PREFIX_REPNZ equ PREFIX_REPNE
PREFIX_REPE equ 08h ; bit 3
PREFIX_REP equ PREFIX_REPE
PREFIX_REPZ equ PREFIX_REPE
PREFIX_SEG_NONE equ 0 000 0000b
PREFIX_CS equ 0 001 0000b
PREFIX_SS equ 0 010 0000b
PREFIX_DS equ 0 011 0000b
PREFIX_ES equ 0 100 0000b
PREFIX_FS equ 0 101 0000b
PREFIX_GS equ 0 110 0000b

; bit indexes (only for 1 bit prefixes)
BI_OP_SIZE equ 00h
BI_ADDR_SIZE equ 01h
BI_REPNE equ 02h
BI_REPNZ equ BI_REPNE
BI_REPE equ 03h
BI_REP equ BI_REPE
BI_REPZ equ BI_REPE

; prefix real opcodes

OPCODE_OP_SIZE equ 066h
OPCODE_ADDR_SIZE equ 067h
OPCODE_REPNE equ 0f2h
OPCODE_REPNZ equ OPCODE_REPNE
OPCODE_REPE equ 0f3h
OPCODE_REP equ OPCODE_REPE
OPCODE_REPZ equ OPCODE_REPE
OPCODE_CS equ 02eh
OPCODE_SS equ 036h
OPCODE_DS equ 03eh
OPCODE_ES equ 026h
OPCODE_FS equ 064h
OPCODE_GS equ 065h

2.4 Instruction data

Now as we have defined our instruction by its opcod e,
operands and prefixes, we have to create some struc ture which
will hold data for instruction - for example which register
it uses, memory address, any immediate data and so on. The
use of this structure will depend on which instruct ion it is
and what operands it uses and what prefixes it has (operand
and address prefixes especially). Lets look on this structure
("_idata.inc"):

; _idata.inc

include registers.inc
 include _mem.inc

_idata struct
 union
 reg1 byte ?
 union

 imm1_8 byte ?
 imm1_16 word ?
 imm1_32 dword ?

 ends
 mem1 _mem <>
 ends
 union
 reg2 byte ?
 union

 imm2_8 byte ?
 imm2_16 word ?
 imm2_32 dword ?

 ends
 mem2 _mem <>
 ends
ends

Okay, we have 2 unions inside - we can use each uni on
as register/immediate/memory. It allow us to constr uct any
option from our defined OPERANDS_XXX constants. The reg1 and
reg2 fields will be used ofcourse to encode registe rs. We
need some constants ("registers.inc"):

; registers.inc

.const

 REG_EAX equ 00h
 REG_EBX equ 03h
 REG_ECX equ 01h
 REG_EDX equ 02h
 REG_ESI equ 06h
 REG_EDI equ 07h
 REG_EBP equ 05h
 REG_ESP equ 04h

2.4.1 Memory address structure

We have few addressing modes on x86 processors.
For example we have direct address [0x00112233] or by
register [eax] and so on. The most complex will be
addressing mode like this [reg1+reg2
*multiply+displacement] (we will focus on specific
addressing modes in later chapters). Multiply can b e
1/2/4/8. It's 4 values so we need only 2 bits to en code
it. Then we have displacement - it can be 1/2/4 byt e
long so we need 4 bytes to handle this. So our _mem
struct will be like this ("_mem.inc"):

; _mem.inc

include registers.inc

.const
 ; multiplication values
 MULTI_1 equ 00 000000b
 MULTI_2 equ 01 000000b
 MULTI_4 equ 10 000000b
 MULTI_8 equ 11 000000b

 MULTI_BITMASK equ 11 000000b

 ; addressing modes
 MODE_DISP equ 100 00000b
 MODE_REG equ 011 00000b
 MODE_REG_REG equ 010 00000b
 MODE_REG_DISP equ 001 00000b
 MODE_REG_REG_DISP equ 000 00000b

 MODE_BITMASK equ 111 00000b

_mem struct
 memreg1 byte ? ; bits 5/6/7 = mode
 memreg2 byte ? ; bits 6/7 = multiplicator
 union
 disp8 byte ?

 disp16 word ?
 disp32 dword ?

 ends
_mem ends

So in memreg1 byte, bits number 0/1/2 contain info
about register and bits 5/6/7 about the addressing
mode.
In memreg2 byte bits 0/1/2 encode the second regist er
and bits 6/7 define multiplicator. Disp is just
displacement which can be 1/2/4 byte long.

2.5 Pointer to code

 The next member of _instr structure will be the p ointer to
the code - it will just point to the real code that we are
disassembling - it is very important but I will exp lain it
later.
So this pointer will be just a dword and we will ca ll it
"pointer" - look into 2.6 for the whole _instr structure
definition.

 2.6 "Label mark"

Label mark is very handy thing which was "invented" by
Mental Driller (I think so) in his metamorphic viru s called
"metamorpho" :). It's not really neccessery during disassembling
but it will be important during morphing of the cod e. Label mark
it's just a byte that can be 0 or 1. It's 1 if any jump/call
point to this instruction (instruction has a label on it) or 0
if not. The whole _instr structure now looks:

; _instr.inc

include opcodes.inc
include operands.inc
include prefixes.inc

 include _idata.inc

_instr struct
 opcode byte ?

 operands byte ?
 prefixes byte ?

 _idata idata <>
 pointer dword ?
 labelmark byte ?

 _instr ends

--- -------------------
3.0 Files organization
--- -------------------

Okay we created some files - now lets make a clear view of
how we set up directories for our engine. First of all we need
some root directory - lets call it "dasm_engine". I nside we should
have 2 folders "source" and "include" or "src" and "inc" as you

wish (I choose src/inc). We will put all *.inc file s into the
"inc" directory and all *.asm files into "src" dire ctory. So till
now we have:

> dasm_engine
 > src
 > inc
 > _instr.inc
 > opcodes.inc
 > operands.inc

 > prefixes.inc
 > registers.inc
 > _mem.inc
 > _idata.inc

U can download those files from the link:
http://rapidshare.com/files/292167997/dasm_engine.r ar.html .

--- -------------------
4.0 What in next part?
--- -------------------

In next part we will discuss about the whole engine routine
- how it will work, what parameters it will take an d so on. Then
we will write few (or many :) useful macros. And we will start to
write the disassembling procedure :). If you have a ny questions or
remarks or anything else just email me:
alek.barszczewski@gmail.com.

